Cost-Sensitive Exploration in Bayesian Reinforcement Learning

نویسندگان

  • Dongho Kim
  • Kee-Eung Kim
  • Pascal Poupart
چکیده

In this paper, we consider Bayesian reinforcement learning (BRL) where actions incur costs in addition to rewards, and thus exploration has to be constrained in terms of the expected total cost while learning to maximize the expected longterm total reward. In order to formalize cost-sensitive exploration, we use the constrained Markov decision process (CMDP) as the model of the environment, in which we can naturally encode exploration requirements using the cost function. We extend BEETLE, a model-based BRL method, for learning in the environment with cost constraints. We demonstrate the cost-sensitive exploration behaviour in a number of simulated problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Bayesian Reinforcement Learning via Approximate Linear Programming

In this paper, we consider the safe learning scenario where we need to restrict the exploratory behavior of a reinforcement learning agent. Specifically, we treat the problem as a form of Bayesian reinforcement learning in an environment that is modeled as a constrained MDP (CMDP) where the cost function penalizes undesirable situations. We propose a model-based Bayesian reinforcement learning ...

متن کامل

Efficient Bayesian Clustering for Reinforcement Learning

A fundamental artificial intelligence challenge is how to design agents that intelligently trade off exploration and exploitation while quickly learning about an unknown environment. However, in order to learn quickly, we must somehow generalize experience across states. One promising approach is to use Bayesian methods to simultaneously cluster dynamics and control exploration; unfortunately, ...

متن کامل

A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning

We present a tutorial on Bayesian optimization, a method of finding the maximum of expensive cost functions. Bayesian optimization employs the Bayesian technique of setting a prior over the objective function and combining it with evidence to get a posterior function. This permits a utility-based selection of the next observation to make on the objective function, which must take into account b...

متن کامل

A Bayesian Approach to Imitation in Reinforcement Learning

In multiagent environments, forms of social learning such as teaching and imitation have been shown to aid the transfer of knowledge from experts to learners in reinforcement learning (RL). We recast the problem of imitation in a Bayesian framework. Our Bayesian imitation model allows a learner to smoothly pool prior knowledge, data obtained through interaction with the environment, and informa...

متن کامل

Efficient Exploration through Bayesian Deep Q-Networks

We propose Bayesian Deep Q-Network (BDQN), a practical Thompson sampling based Reinforcement Learning (RL) Algorithm. Thompson sampling allows for targeted exploration in high dimensions through posterior sampling but is usually computationally expensive. We address this limitation by introducing uncertainty only at the output layer of the network through a Bayesian Linear Regression (BLR) mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012